Chapter 14
Arbitrary Lagrangian–Eulerian Methods

Jean Donea\(^1\), Antonio Huerta\(^2\), J.-Ph. Ponthot\(^1\) and A. Rodríguez-Ferran\(^2\)

\(^1\) Université de Liège, Liège, Belgium
\(^2\) Universitat Politècnica de Catalunya, Barcelona, Spain

1 INTRODUCTION

The numerical simulation of multidimensional problems in fluid dynamics and nonlinear solid mechanics often requires coping with strong distortions of the continuum under consideration while allowing for a clear delineation of free surfaces and fluid–fluid, solid–solid, or fluid–structure interfaces. A fundamentally important consideration when developing a computer code for simulating problems in this class is the choice of an appropriate kinematical description of the continuum. In fact, such a choice determines the relationship between the deforming continuum and the finite grid or mesh of computing zones, and thus conditions the ability of the numerical method to deal with large distortions and provide an accurate resolution of material interfaces and mobile boundaries.

The algorithms of continuum mechanics usually make use of two classical descriptions of motion: the Lagrangian description and the Eulerian description; see, for instance, Malvern (1969). The arbitrary Lagrangian–Eulerian (ALE, in short) description, which is the subject of the present chapter, was developed in an attempt to combine the advantages of the above classical kinematical descriptions, while minimizing their respective drawbacks as far as possible.

Lagrangian algorithms, in which each individual node of the computational mesh follows the associated material particle during motion (see Figure 1), are mainly used in structural mechanics. The Lagrangian description allows an easy tracking of free surfaces and interfaces between different materials. It also facilitates the treatment of materials with history-dependent constitutive relations. Its weakness is its inability to follow large distortions of the computational domain without recourse to frequent remeshing operations.

Eulerian algorithms are widely used in fluid dynamics. Here, as shown in Figure 1, the computational mesh is fixed and the continuum moves with respect to the grid. In the Eulerian description, large distortions in the continuum motion can be handled with relative ease, but generally at the expense of precise interface definition and the resolution of flow details.

Because of the shortcomings of purely Lagrangian and purely Eulerian descriptions, a technique has been developed that succeeds, to a certain extent, in combining the best features of both the Lagrangian and the Eulerian approaches. Such a technique is known as the arbitrary Lagrangian–Eulerian (ALE) description. In the ALE description, the nodes of the computational mesh may be moved with the continuum in normal Lagrangian fashion, or be held fixed in Eulerian manner, or, as suggested in
Figure 1. One-dimensional example of Lagrangian, Eulerian and ALE mesh and particle motion.

Figure 1, be moved in some arbitrarily specified way to give a continuous rezoning capability. Because of this freedom in moving the computational mesh offered by the ALE description, greater distortions of the continuum can be handled than would be allowed by a purely Lagrangian method, with more resolution than that afforded by a purely Eulerian approach. The simple example in Figure 2 illustrates the ability of the ALE description to accommodate significant distortions of the computational mesh, while preserving the clear delineation of interfaces typical of a purely Lagrangian approach. A coarse finite element mesh is used to model the detonation of an explosive charge in an extremely strong cylindrical vessel partially filled with water. A comparison is made of the mesh configurations at time $t = 1.0$ ms obtained respectively, with the ALE description (with automatic continuous rezoning) and with a purely Lagrangian mesh description. As further evidenced by the details of the charge–water interface, the Lagrangian approach suffers from a severe degradation of the computational mesh, in contrast with the ability of the ALE approach to maintain quite a regular mesh configuration of the charge–water interface.

The aim of the present chapter is to provide an in-depth survey of ALE methods, including both conceptual aspects and numerical implementation details in view of the applications in large deformation material response, fluid dynamics, nonlinear solid mechanics, and coupled fluid–structure problems. The chapter is organized as follows. The next section introduces the ALE kinematical description as a generalization of the classical Lagrangian and Eulerian descriptions of motion. Such generalization rests upon the introduction of a so-called referential domain and on the mapping between the referential domain and the classical, material, and spatial domains. Then, the fundamental ALE equation is introduced, which provides a relationship between material time derivative and referential time derivative. On this basis, the ALE form of the basic conservation equations for mass, momentum, and energy is established. Computational aspects of the ALE algorithms are then addressed. This includes mesh-update procedures in finite element analysis, the combination of ALE and mesh-refinement procedures, as well as the use of ALE in connection with mesh-free methods. The chapter closes with a discussion of problems commonly encountered in the computer implementation of ALE algorithms in fluid dynamics, solid mechanics, and coupled problems describing fluid–structure interaction.
2 DESCRIPTIONS OF MOTION

Since the ALE description of motion is a generalization of the Lagrangian and Eulerian descriptions, we start with a brief reminder of these classical descriptions of motion. We closely follow the presentation by Donea and Huerta (2003).

2.1 Lagrangian and Eulerian viewpoints

Two domains are commonly used in continuum mechanics: the material domain \(R_X \subset \mathbb{R}^{n_x} \), with \(n_x \) spatial dimensions, made up of material particles \(X \), and the spatial domain \(R_x \), consisting of spatial points \(x \).

The Lagrangian viewpoint consists of following the material particles of the continuum in their motion. To this end, one introduces, as suggested in Figure 3, a computational grid, which follows the continuum in its motion, the grid nodes being permanently connected to the same material points. The material coordinates, \(X \), allow us to identify the reference configuration, \(R_X \). The motion of the material points relates the material coordinates, \(X \), to the spatial ones, \(x \). It is defined by an application \(\varphi \) such that

\[
\varphi: R_X \times [t_0, t_{final}] \rightarrow R_x \times [t_0, t_{final}]
\]

\[
(X, t) \rightarrow \varphi(X, t) = (x, t)
\]

which allows us to link \(X \) and \(x \) in time by the law of motion, namely

\[
x = x(X, t), \quad t = t
\]

which explicitly states the particular nature of \(\varphi \): first, the spatial coordinates \(x \) depend both on the material particle, \(X \), and time \(t \), and, second, physical time is measured by the same variable \(t \) in both material and spatial domains. For every fixed instant \(t \), the mapping \(\varphi \) defines a configuration in the spatial domain. It is convenient to employ a matrix representation for the gradient of \(\varphi \),

\[
\frac{\partial \varphi}{\partial (X, t)} = \begin{pmatrix}
\frac{\partial x}{\partial X} v
\end{pmatrix}
\]

where \(\mathbf{0}^T \) is a null row-vector and the material velocity \(v \) is

\[
v(X, t) = \frac{\partial x}{\partial t} \bigg|_x
\]

with \(\bigg|_x \) meaning “holding the material coordinate \(X \) fixed”.

Obviously, the one-to-one mapping \(\varphi \) must verify \(\det(\partial x/\partial X) > 0 \) (nonzero to impose a one-to-one correspondence and positive to avoid orientation change of the reference axes) at each point \(X \) and instant \(t > t_0 \). This allows us to keep track of the history of motion and, by the inverse transformation \((X, t) = \varphi^{-1}(x, t) \), to identify, at any instant, the initial position of the material particle occupying position \(x \) at time \(t \).

Since the material points coincide with the same grid points during the whole motion, there are no convective effects in Lagrangian calculations: the material derivative reduces to a simple time derivative. The fact that each finite element of a Lagrangian mesh always contains the same material particles represents a significant advantage from the computational viewpoint, especially in problems involving materials with history-dependent behavior. This aspect is discussed in detail by Bonet and Wood (1997).

However, when large material deformations do occur, for instance vortices in fluids, Lagrangian algorithms undergo a loss in accuracy, and may even be unable to conclude a calculation, due to excessive distortions of the computational mesh linked to the material.

The difficulties caused by an excessive distortion of the finite element grid are overcome in the Eulerian formulation. The basic idea in the Eulerian formulation, which is very popular in fluid mechanics, consists in examining, as time evolves, the physical quantities associated with the fluid particles passing through a fixed region of space. In an Eulerian description, the finite element mesh is thus fixed and the continuum moves and deforms with respect to the computational grid. The conservation equations are formulated in terms of the spatial coordinates \(x \) and the time \(t \). Therefore, the Eulerian description of motion only involves variables and functions having an instantaneous significance in a fixed region of space. The material velocity \(v \) at a given mesh node corresponds to the velocity of the material point coincident at the considered time \(t \) with the considered node. The velocity \(v \) is consequently expressed with respect to the fixed-element mesh without any reference to the initial configuration of the continuum and the material coordinates \(X; v = v(x, t) \).
Since the Eulerian formulation dissociates the mesh nodes from the material particles, convective effects appear because of the relative motion between the deforming material and the computational grid. Eulerian algorithms present numerical difficulties due to the nonsymmetric character of convection operators, but permit an easy treatment of complex material motion. By contrast with the Lagrangian description, serious difficulties are now found in following deforming material interfaces and mobile boundaries.

2.2 ALE kinematical description

The above reminder of the classical Lagrangian and Eulerian descriptions has highlighted the advantages and drawbacks of each individual formulation. It has also shown the potential interest in a generalized description capable of combining at best the interesting aspects of the classical mesh descriptions while minimizing their drawbacks as far as possible. Such a generalized description is termed arbitrary Lagrangian–Eulerian (ALE) description. ALE methods were first proposed in the finite difference and finite volume context. Original developments were made, among others, by Noh (1964), Franck and Lazarus (1964), Trulio (1966), and Hirt et al. (1974); this last contribution has been reprinted in 1997. The method was subsequently adopted in the finite element context and early applications are to be found in the work of Donea et al. (1977), Belytschko et al. (1978), Belytschko and Kennedy (1978), and Hughes et al. (1981).

In the ALE description of motion, neither the material configuration \(\mathbf{R}_X \) nor the spatial configuration \(\mathbf{R}_x \) is taken as the reference. Thus, a third domain is needed: the referential configuration \(\mathbf{R}_X \) where reference coordinates \(\chi \) are introduced to identify the grid points. Figure 4 shows these domains and the one-to-one transformations relating the configurations. The referential domain \(\mathbf{R}_X \) is mapped into the material and spatial domains by \(\Psi \) and \(\Phi \) respectively. The particle motion \(\varphi \) may then be expressed as \(\varphi = \Phi \circ \Psi^{-1} \), clearly showing that, of course, the three mappings \(\Psi, \Phi, \varphi \) are not independent.

The mapping of \(\Phi \) from the referential domain to the spatial domain, which can be understood as the motion of the grid points in the spatial domain, is represented by

\[
\Phi: \mathbf{R}_X \times [t_0, t_{\text{final}}] \rightarrow \mathbf{R}_x \times [t_0, t_{\text{final}}]
\]

\[
(X, t) \longmapsto \Phi(X, t) = (x, t)
\]

and its gradient is

\[
\frac{\partial \Phi}{\partial (X, t)} = \begin{pmatrix}
\frac{\partial x}{\partial \chi} \\
\frac{\partial \chi}{\partial t}
\end{pmatrix}
\]

where now, the mesh velocity

\[
\dot{v}(X, t) = \frac{\partial x}{\partial t} \mid \chi
\]

is involved. Note that both the material and the mesh move with respect to the laboratory. Thus, the corresponding material and mesh velocities have been defined by deriving the equations of material motion and mesh motion respectively with respect to time (see equations 4 and 7).

Finally, regarding \(\Psi \), it is convenient to represent directly its inverse \(\Psi^{-1} \),

\[
\Psi^{-1}: \mathbf{R}_X \times [t_0, t_{\text{final}}] \rightarrow \mathbf{R}_x \times [t_0, t_{\text{final}}]
\]

\[
(X, t) \longmapsto \Psi^{-1}(X, t) = (\chi, t)
\]

and its gradient is

\[
\frac{\partial \Psi^{-1}}{\partial (X, t)} = \begin{pmatrix}
\frac{\partial \chi}{\partial X} \\
\frac{\partial \chi}{\partial t}
\end{pmatrix}
\]

where the velocity \(\mathbf{w} \) is defined as

\[
\mathbf{w} = \frac{\partial \chi}{\partial t} \mid _X
\]

and can be interpreted as the particle velocity in the referential domain, since it measures the time variation of the referential coordinate \(\chi \) holding the material particle \(X \) fixed. The relation between velocities \(\mathbf{v}, \dot{v}, \), and \(\mathbf{w} \) can be obtained by differentiating \(\varphi = \Phi \circ \Psi^{-1} \),

\[
\frac{\partial \Phi}{\partial (X, t)}(X, t) = \frac{\partial \Phi}{\partial (\chi, t)}(\Psi^{-1}(X, t)) \frac{\partial \Psi^{-1}}{\partial (X, t)}(X, t)
\]

\[
= \frac{\partial \Phi}{\partial (\chi, t)}(\chi, t) \frac{\partial \Psi^{-1}}{\partial (X, t)}(X, t)
\]
or, in matrix format:

\[
\begin{pmatrix}
\frac{\partial x}{\partial X} & v \\
0^T & 1
\end{pmatrix}
\begin{pmatrix}
\frac{\partial x}{\partial \chi} & \hat{v} \\
0^T & 1
\end{pmatrix}
\begin{pmatrix}
\frac{\partial \chi}{\partial X} & w \\
0^T & 1
\end{pmatrix}
\]

(12)

which yields, after block multiplication,

\[
v = \hat{v} + \frac{\partial x}{\partial \chi} \cdot w
\]

(13)

This equation may be rewritten as

\[
c := v - \hat{v} = \frac{\partial x}{\partial \chi} \cdot w
\]

(14)

thus defining the convective velocity \(c \), that is, the relative velocity between the material and the mesh.

The convective velocity \(c \) (see equation 14), should not be confused with \(w \) (see equation 10). As stated before, \(w \)

is the particle velocity as seen from the referential domain \(R_\chi \), whereas \(c \) is the particle velocity relative to the mesh as

seen from the spatial domain \(R_e \) (both \(v \) and \(\hat{v} \) are variations of coordinate \(x \)). In fact, equation (14) implies that \(c = w \) if and only if \(\partial x/\partial \chi = I \) (where \(I \) is the identity tensor), that is, when the mesh motion is purely translational, without rotations or deformations of any kind.

After the fundamentals on ALE kinematics have been presented, it should be remarked that both Lagrangian or Eulerian formulations may be obtained as particular cases. With the choice \(\Psi = I \), equation (3) reduces to \(X \equiv \chi \) and a Lagrangian description results: the material and mesh velocities, equations (4) and (7), coincide, and the convective velocity \(c \) (see equation 14), is null (there are no convective terms in the conservation laws). If, on the other hand, \(\Phi = I \), equation (2) simplifies into \(x \equiv \chi \), thus implying a Eulerian description: a null mesh velocity is obtained from equation (7) and the convective velocity \(c \) is simply identical to the material velocity \(v \).

In the ALE formulation, the freedom of moving the mesh is very attractive. It helps to combine the respective advantages of the Lagrangian and Eulerian formulations. This could, however, be overshadowed by the burden of specifying grid velocities well suited to the particular problem under consideration. As a consequence, the practical implementation of the ALE description requires that an automatic mesh-displacement prescription algorithm be supplied.

3 THE FUNDAMENTAL ALE EQUATION

In order to express the conservation laws for mass, momentum, and energy in an ALE framework, a relation between material (or total) time derivative, which is inherent in conservation laws, and referential time derivative is needed.

3.1 Material, spatial, and referential time derivatives

In order to relate the time derivative in the material, spatial, and referential domains, let a scalar physical quantity be described by \(f(x, t) \), \(f^*(\chi, t) \), and \(f^{**}(X, t) \) in the spatial, referential, and material domains respectively. Stars are employed to emphasize that the functional forms are, in general, different.

Since the particle motion \(\Phi \) is a mapping, the spatial description \(f(x, t) \), and the material description \(f^{**}(X, t) \) of the physical quantity can be related as

\[
f^{**}(X, t) = f(\Phi(X, t), t) \quad \text{or} \quad f^{**} = f \circ \Phi
\]

(15)

The gradient of this expression can be easily computed as

\[
\frac{\partial f^{**}}{\partial (X, t)} = \frac{\partial f}{\partial (X, t)} + \frac{\partial \Phi}{\partial (X, t)}
\]

which is amenable to the matrix form

\[
\begin{pmatrix}
\frac{\partial f^{**}}{\partial X} & \frac{\partial f^{**}}{\partial t}
\end{pmatrix}
\begin{pmatrix}
\frac{\partial x}{\partial X} & v \\
0^T & 1
\end{pmatrix}
\]

(17)

which renders, after block multiplication, a first expression, which is obvious, that is, \((\partial f^{**}/\partial X) = (\partial f/\partial x)(\partial x/\partial X) \); however, the second one is more interesting:

\[
\frac{\partial f^{**}}{\partial t} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x} \cdot v
\]

(18)

Note that this is the well-known equation that relates the material and the spatial time derivatives. Dropping the stars to ease the notation, this relation is finally cast as

\[
\frac{\partial f}{\partial t} \bigg|_X = \frac{\partial f}{\partial t} \bigg|_x + v \cdot \nabla f \quad \text{or} \quad \frac{df}{dt} \bigg|_X = \frac{df}{dt} \bigg|_x + v \cdot \nabla f
\]

(19)

which can be interpreted in the usual way: the variation of a physical quantity for a given particle \(X \) is the local variation plus a convective term taking into account the relative motion between the material and spatial (laboratory) systems. Moreover, in order not to overload the rest of the text with notation, except for the specific sections, the material time derivative is denoted as

\[
\frac{d \cdot}{dt} := \frac{\partial \cdot}{\partial t} \bigg|_X
\]

(20)

and the spatial time derivative as

\[
\frac{\partial \cdot}{\partial t} := \frac{\partial \cdot}{\partial t} \bigg|_x
\]

(21)

The relation between material and spatial time derivatives is now extended to include the referential time derivative.
With the help of mapping \(\Psi \), the transformation from the referential description \(f^*(\chi, t) \) of the scalar physical quantity to the material description \(f^{**}(X, t) \) can be written as

\[
f^{**} = f^* \circ \Psi^{-1}
\]

(22)

and its gradient can be easily computed as

\[
\frac{\partial f^{**}}{\partial (X, t)} (X, t) = \frac{\partial f^*}{\partial (\chi, t)} (\chi, t) \frac{\partial \Psi^{-1}}{\partial (X, t)} (X, t)
\]

(23)

or, in matrix form

\[
\begin{pmatrix}
\frac{\partial f^{**}}{\partial X} & \frac{\partial f^{**}}{\partial t}
\end{pmatrix} = \begin{pmatrix}
\frac{\partial f^*}{\partial \chi} & \frac{\partial f^*}{\partial t}
\end{pmatrix} \begin{pmatrix}
\frac{\partial \chi}{\partial X} & \mathbf{u}
\end{pmatrix}
\]

(24)

which renders, after block multiplication,

\[
\frac{\partial f^{**}}{\partial t} = \frac{\partial f^*}{\partial t} + \frac{\partial f^*}{\partial \chi} \cdot \mathbf{w}
\]

(25)

Note that this equation relates the material and the referential time derivatives. However, it also requires the evaluation of the gradient of the considered quantity in the referential domain. This can be done, but in computational mechanics it is usually easier to work in the spatial (or material) domain. Moreover, in fluids, constitutive relations are naturally expressed in the spatial configuration and the Cauchy stress tensor, which will be introduced next, is the natural measure for stresses. Thus, using the definition of \(\mathbf{w} \) given in equation (14), the previous equation may be rearranged into

\[
\frac{\partial f^{**}}{\partial t} = \frac{\partial f^*}{\partial t} + \frac{\partial f^*}{\partial \chi} \cdot \mathbf{c}
\]

(26)

The fundamental ALE relation between material time derivatives, referential time derivatives, and spatial gradient is finally cast as (stars dropped)

\[
\frac{\partial f}{\partial t} \bigg|_X = \frac{\partial f}{\partial t} \bigg|_\chi + \frac{\partial f}{\partial \chi} \cdot \mathbf{c} = \frac{\partial f}{\partial t} \bigg|_\chi + \mathbf{c} \cdot \nabla f
\]

(27)

and shows that the time derivative of the physical quantity \(f \) for a given particle \(X \), that is, its material derivative, is its local derivative (with the reference coordinate \(\chi \) held fixed) plus a convective term taking into account the relative velocity \(\mathbf{c} \) between the material and the reference system. This equation is equivalent to equation (19) but in the ALE formulation, that is, when \((\chi, t) \) is the reference.

3.2 Time derivative of integrals over moving volumes

To establish the integral form of the basic conservation laws for mass, momentum, and energy, we also need to consider the rate of change of integrals of scalar and vector functions over a moving volume occupied by fluid.

Consider thus a material volume \(V_t \) bounded by a smooth closed surface \(S_t \) whose points at time \(t \) move with the material velocity \(\mathbf{v} = \mathbf{v}(x, t) \) where \(x \in S_t \). A material volume is a volume that permanently contains the same particles of the continuum under consideration. The material time derivative of the integral of a scalar function \(f(x, t) \) (note that \(f \) is defined in the spatial domain) over the time-varying material volume \(V_t \) is given by the following well-known expression, often referred to as Reynolds transport theorem (see, for instance, Belytschko et al., 2000 for a detailed proof):

\[
\frac{d}{dt} \int_{V_t} f(x, t) \, dV = \int_{V_t=V_t} \frac{\partial f(x, t)}{\partial t} \, dV + \int_{S_t=S_t} f(x, t) \mathbf{v} \cdot \mathbf{n} \, dS
\]

(28)

which holds for smooth functions \(f(x, t) \). The volume integral in the right-hand side is defined over a control volume \(V_c \) (fixed in space), which coincides with the moving material volume \(V_t \) at the considered instant, \(t \), in time. Similarly, the fixed control surface \(S_c \) coincides at time \(t \) with the closed surface \(S_t \) bounding the material volume \(V_t \). In the surface integral, \(\mathbf{n} \) denotes the unit outward normal to the surface \(S_t \) at time \(t \), and \(\mathbf{v} \) is the material velocity of points of the boundary \(S_t \). The first term in the right-hand side of expression (28) is the local time derivative of the volume integral. The boundary integral represents the flux of the scalar quantity \(f \) across the fixed boundary of the control volume \(V_c \equiv V_t \).

Noting that

\[
\int_{S_c} \mathbf{v} \cdot \mathbf{n} \, dS = \int_{V_c} \nabla \cdot (f \mathbf{v}) \, dV
\]

(29)

one obtains the alternative form of Reynolds transport theorem:

\[
\frac{d}{dt} \int_{V_t} f(x, t) \, dV = \int_{V_t=V_t} \left(\frac{\partial f(x, t)}{\partial t} + \nabla \cdot (f \mathbf{v}) \right) \, dV
\]

(30)

Similar forms hold for the material derivative of the volume integral of a vector quantity. Analogous formulae can be developed in the ALE context, that is, with a referential time derivative. In this case, however, the characterizing
velocity is no longer the material velocity \(\mathbf{v} \), but the grid velocity \(\mathbf{\hat{v}} \).

4 ALE FORM OF CONSERVATION EQUATIONS

To serve as an introduction to the discussion of ALE finite element and finite volume models, we establish in this section the differential and integral forms of the conservation equations for mass, momentum, and energy.

4.1 Differential forms

The ALE differential form of the conservation equations for mass, momentum, and energy are readily obtained from the corresponding well-known Eulerian forms

\[
\begin{align*}
\text{Mass:} & \quad \frac{d\rho}{dt} + \nabla \cdot (\rho \mathbf{v}) = 0 \\
\text{Momentum:} & \quad \rho \frac{d\mathbf{v}}{dt} = \mathbf{f} + \nabla \cdot \mathbf{\sigma} + \rho \mathbf{b} \\
\text{Energy:} & \quad \rho \frac{d\mathbf{E}}{dt} = \mathbf{f} \cdot \mathbf{v} + \nabla \cdot (\mathbf{\sigma} \cdot \mathbf{v}) + \mathbf{v} \cdot \mathbf{b}
\end{align*}
\]

where \(\rho \) is the mass density, \(\mathbf{v} \) is the material velocity vector, \(\mathbf{\sigma} \) denotes the Cauchy stress tensor, \(\mathbf{b} \) is the specific body force vector, and \(\mathbf{E} \) is the specific total energy. Only mechanical energies are considered in the above form of the energy equation. Note that the stress term in the form of the energy equation is Reynolds transport theorem

\[
\nabla \cdot (\mathbf{\sigma} \cdot \mathbf{v}) = \mathbf{\sigma} : \nabla \mathbf{v}
\]

where \(\nabla \mathbf{v} \) is the spatial velocity gradient.

Also frequently used is the balance equation for the total energy

\[
\frac{d}{dt} (\rho \mathbf{E}) = \mathbf{f} \cdot \mathbf{v} + \nabla \cdot (\mathbf{\sigma} \cdot \mathbf{v}) + \mathbf{v} \cdot \mathbf{b}
\]

where \(\mathbf{\sigma} \) is the Cauchy stress tensor, \(\mathbf{\nabla} \) is the material derivative of velocity \(\mathbf{v} \), and \(\rho \) is the mass density.

4.2 Integral forms

The starting point for deriving the ALE integral form of the conservation equations is Reynolds transport theorem (28) applied to an arbitrary volume \(V_t \), whose boundary \(S_t = \partial V_t \) moves with the mesh velocity \(\mathbf{\hat{v}} \):

\[
\frac{d}{dt} \int_{V_t} f(\mathbf{x}, t) \, dV = \int_{V_t} \frac{\partial f(\mathbf{x}, t)}{\partial t} \bigg|_x \, dV + \int_{S_t} \mathbf{f}(\mathbf{x}, t) \cdot \mathbf{n} \, dS
\]
where, in this case, we have explicitly indicated that the
time derivative in the first term of the right-hand side is a
spatial time derivative, as in expression (28). We
then successively replace the scalar \(f(x, t) \) by the fluid
density \(\rho \), momentum \(\rho \mathbf{v} \), and specific total energy \(\rho E \).
Similarly, the spatial time derivative \(\partial f / \partial t \) is substituted
with expressions (31) for the mass, momentum, and energy
equation. The end result is the following set of ALE integral forms:

\[
\frac{\partial}{\partial t} \int_{V_t} \rho \, dV + \int_{S_t} \rho \mathbf{c} \cdot \mathbf{n} \, dS = 0
\]

\[
\frac{\partial}{\partial t} \int_{V_t} \rho \mathbf{v} \, dV + \int_{S_t} \rho \mathbf{v} \mathbf{c} \cdot \mathbf{n} \, dS = \int_{V_t} (\nabla \cdot \mathbf{\sigma} + \rho \mathbf{b}) \, dV
\]

\[
\frac{\partial}{\partial t} \int_{V_t} \rho E \, dV + \int_{S_t} \rho E \mathbf{c} \cdot \mathbf{n} \, dS = \int_{V_t} (\mathbf{v} \cdot \mathbf{b} + \nabla \cdot (\mathbf{\sigma} \cdot \mathbf{v})) \, dV
\]

The objective of mesh regularization is of a geometrical
nature. It consists in keeping the computational mesh as
regular as possible during the whole calculation, thereby
avoiding excessive distortions and squeezing of the com-
puting zones and preventing mesh entanglement. Of course,
this procedure decreases the numerical errors due to mesh
distortion.

Mesh regularization requires that updated nodal coordi-
ates be specified at each station of a calculation, either
through step displacements, or from current mesh veloc-
ities \(\hat{\mathbf{v}} \). Alternatively, when it is preferable to prescribe the
relative motion between the mesh and the material parti-
cles, the \textit{referential velocity} \(\mathbf{w} \) is specified. In this case, \(\hat{\mathbf{v}} \)
is deduced from equation (13). Usually, in fluid flows, the
mesh velocity is interpolated, and in solid problems, the
mesh displacement is directly interpolated.

First of all, these mesh-updating procedures are classified
depending on whether the \textit{boundary motion is prescribed a priori}
or its motion is unknown.

When the motion of the material surfaces (usually the
boundaries) is known \textit{a priori}, the mesh motion is also
prescribed \textit{a priori}. This is done by defining an adequate
mesh velocity in the domain, usually by simple interpo-
lation. In general, this implies a Lagrangian description at
the moving boundaries (the mesh motion coincides with the
prescribed boundary motion), while a Eulerian formulation
(fixed mesh velocity \(\hat{\mathbf{v}} = \mathbf{0} \)) is employed far away from the
moving boundaries. A transition zone is defined in between.
The interaction problem between a rigid body and a viscous
fluid studied by Huerta and Liu (1988a) falls in this cat-
gory. Similarly, the crack propagation problems discussed by
Koh and Haber (1986) and Koh et al. (1988), where the

5.1 Mesh regularization
boundaries, and, thus, no geometric error is introduced by the mapping. It induces a very low-cost procedure, since new nodal coordinates can be obtained explicitly once the boundaries of the computational domain have been discretized. The main disadvantage of this methodology is that it imposes restrictions on the mesh topology, as two opposite curves have to be discretized with the same number of elements. It has been widely used by the ALE community to update nodal coordinates; see e.g. Ponthot and Hogge (1991), Yamada and Kikuchi (1993), Gadala and Wang (1998, 1999), and Gadala et al. (2002).

5.1.2 Laplacian smoothing and variational methods

As in mesh generation or smoothing techniques, the rezoning of the mesh nodes consists in solving a Laplace (or Poisson) equation for each component of the node velocity or position, so that on a logically regular region the mesh forms lines of equal potential. This method is also sometimes called elliptic mesh generation and was originally proposed by Winslow (1963). This technique has an important drawback: in a nonconvex domain, nodes may run outside it. Techniques to preclude this pitfall either increase the computational cost enormously or introduce new terms in the formulation, which are particular to each geometry. Examples based on this type of mesh-update algorithms are presented, among others, by Benson (1989, 1992a,b), Liu et al. (1988, 1991), Ghosh and Kikuchi (1991), Chenot and Bellet (1995), and Löhner and Yang (1996). An equivalent approach based on a mechanical interpretation: (non)linear elasticity problem is used by Schreurs et al. (1986), Le Tallec and Martin (1996), Belytschko et al. (2000), and Armero and Love (2003), while Cescutti et al. (1988) minimize a functional quantifying the mesh distortion.

5.1.3 Mesh-smoothing and simple interpolations

In fact, in ALE, it is possible to use any mesh-smoothing algorithm designed to improve the shape of the elements once the topology is fixed. Simple iterative averaging procedures can be implemented where possible; see, for instance, Donea et al. (1982), Batina (1991), Trépanier et al. (1993), Ghosh and Raju (1996), and Aymone et al. (2001). A more robust algorithm (especially in the neighborhood of boundaries with large curvature) was proposed by Giuliani (1982) on the basis of geometric considerations. The goal of this method is to minimize both the squeeze and distortion of each element in the mesh. Donea (1983) and Huerta and Casadei (1994) show examples using this algorithm; Sarrate and Huerta (2001) and Hermansson and Hansbo (2003)
made improvements to the original procedure. The main advantage of these mesh-regularization methods is that they are both simple and rather general. They can in fact be applied to unstructured meshes consisting of triangular and quadrilateral elements in 2-D, and to tetrahedral, hexahedral, prism, and pyramidal elements in 3-D.

5.2 Mesh adaptation

When the ALE description is used as an adaptive technique, the objective is to optimize the computational mesh to achieve an improved accuracy, possibly at low computing cost (the total number of elements in a mesh remains unchanged throughout the computation, as well as the element connectivity). Mesh refinement is typically carried out by moving the nodes towards zones of strong solution gradient, such as localization zones in large deformation problems involving softening materials. The ALE algorithm then includes an indicator of the error, and the mesh is modified to obtain an equi-distribution of the error over the entire computational domain. The remesh indicator can, for instance, be made a function of the average or the jump of a certain state variable. Equi-distribution can be carried out using an elliptic or a parabolic differential equation. The ALE technique can nevertheless be coupled with traditional mesh-refinement procedures, such as h-adaptivity, to further enhance accuracy through the selective addition of new degrees of freedom (see Askes and Rodríguez-Ferran, 2001).

Consider, for instance, the use of the ALE formulation for the prediction of yield-line patterns in plates (see Askes et al., 1999). With a coarse fixed mesh, (Figure 5(a)), the spatial discretization is too poor and the yield-line pattern cannot be properly captured. One possible solution is, of course, to use a finer mesh (see Figure 5(b)). Another very attractive possibility from a computational viewpoint is to stay with the coarse mesh and use the ALE formulation to relocate the nodes (see Figure 5(c)). The level of plasticization is used as the remesh indicator. Note that, in this problem, element distortion is not a concern (contrary to the typical situation illustrated in Figure 2); nodes are relocated to concentrate them along the yield lines.

Studies on the use of ALE as a mesh-adaptation technique in solid mechanics are reported, among others, by Piaudier-Cabot et al. (1995), Huerta et al. (1999), Askes and Sluys (2000), Askes and Rodríguez-Ferran (2001), Askes et al. (2001), and Rodríguez-Ferran et al. (2002).

Mesh adaptation has also found widespread use in fluid dynamics. Often, account must be taken of the directional character of the flow, so anisotropic adaptation procedures are to be preferred. For example, an efficient adaptation method for viscous flows with strong shear layers has to be able to refine directionally to adapt the mesh to the anisotropy of the flow. Anisotropic adaptation criteria again have an error estimate as a basic criterion (see, for instance, Fortin et al. (1996), Castro-Díaz et al. (1996), Ait-Ali-Yahia et al. (2002), Habashi et al. (2000), and Müller (2002) for the practical implementation of such procedures).

6 ALE METHODS IN FLUID DYNAMICS

Owing to its superior ability with respect to the Eulerian description to deal with interfaces between materials and mobile boundaries, the ALE description is being widely used for the spatial discretization of problems in fluid and structural dynamics. In particular, the method is frequently employed in the so-called hydrocodes, which are used to simulate the large distortion/deformation response of materials, structures, fluids, and fluid–structure systems. They typically apply to problems in impact and penetration mechanics, fracture mechanics, and detonation/blast analysis. We shall briefly illustrate the specificities of ALE techniques in the modeling of viscous incompressible flows and in the simulation of inviscid, compressible flows, including interaction with deforming structures.

The most obvious influence of an ALE formulation in flow problems is that the convective term must account for the mesh motion. Thus, as already discussed in Section 4.1,
the convective velocity c replaces the material velocity v, which appears in the convective term of Eulerian formulations (see equations 31 and 34). Note that the mesh motion may increase or decrease the convection effects. Obviously, in pure convection (for instance, if a fractional-step algorithm is employed) or when convection is dominant, stabilization techniques must be implemented. The interested reader is urged to consult Chapter 2, Volume 3, for a thorough exposition of stabilization techniques available to remedy the lack of stability of the standard Galerkin formulation in convection-dominated situations, or the textbook by Donea and Huerta (2003).

It is important to note that in standard fluid dynamics, the stress tensor only depends on the pressure and (for viscous flows) on the velocity field at the point and instant under consideration. This is not the case in solid mechanics, as discussed below in Section 7. Thus, stress update is not a major concern in ALE fluid dynamics.

6.1 Boundary conditions

The rest of the discussion of the specificities of the ALE formulation in fluid dynamics concerns boundary conditions. In fact, boundary conditions are related to the problem, not to the description employed. Thus, the same boundary conditions employed in Eulerian or Lagrangian descriptions are implemented in the ALE formulation, that is, along the boundary of the domain, kinematical and dynamical conditions must be defined. Usually, this is formalized as

$$\begin{cases} v = v_D & \text{on } \Gamma_D \\ n \cdot \sigma = t & \text{on } \Gamma_N \end{cases}$$

where v_D and t are the prescribed boundary velocities and tractions respectively; n is the outward unit normal to Γ_N, and Γ_D and Γ_N are the two distinct subsets (Dirichlet and Neumann respectively), which define the piecewise smooth boundary of the computational domain. As usual, stress conditions on the boundaries represent the ‘natural boundary conditions’, and thus, they are automatically included in the weak form of the momentum conservation equation (see 34).

If part of the boundary is composed of a material surface whose position is unknown, then a mixture of both conditions is required. The ALE formulation allows an accurate treatment of material surfaces. The conditions required on a material surface are: (a) no particles can cross it, and (b) stresses must be continuous across the surface (if a net force is applied to a surface of zero mass, the acceleration is infinite). Two types of material surfaces are discussed here: free surfaces and fluid–structure interfaces, which may or may not be frictionless (whether or not the fluid is inviscid).

6.1.1 Free surfaces

The unknown position of free surfaces can be computed using two different approaches. First, for the simple case of a single-valued function $z = z(x, y, t)$, a hyperbolic equation must be solved,

$$\frac{\partial z}{\partial t} + (v \cdot \nabla)z = 0$$

This is the kinematic equation of the surface and has been used, for instance, by Ramaswamy and Kawahara (1987), Huerta and Liu (1988b, 1990), and Souli and Zolesio (2001). Second, a more general approach can be obtained by simply imposing the obvious condition that no particle can cross the free surface (because it is a material surface). This can be imposed in a straightforward manner by using a Lagrangian description (i.e. $w = 0$ or $v = \hat{v}$) along this surface. However, this condition may be relaxed by imposing only the necessary condition: w equal to zero along the normal to the boundary (i.e. $n \cdot w = 0$, where n is the outward unit normal to the fluid domain, or $n \cdot v = n \cdot \hat{v}$). The mesh position, normal to the free surface, is determined from the normal component of the particle velocity and remeshing can be performed along the tangent; see, for instance, Huerta and Liu (1989) or Braess and Wriggers (2000). In any case, these two alternatives correspond to the kinematical condition; the dynamic condition expresses the stress-free situation, $n \cdot \sigma = 0$, and since it is a homogeneous natural boundary condition, as mentioned earlier, it is directly taken into account by the weak formulation.

6.1.2 Fluid–structure interaction

Along solid-wall boundaries, the particle velocity is coupled to the rigid or flexible structure. The enforcement of the kinematic requirement that no particles can cross the interface is similar to the free-surface case. Thus, conditions $n \cdot w = 0$ or $n \cdot v = n \cdot \hat{v}$ are also used. However, due to the coupling between fluid and structure, extra conditions are needed to ensure that the fluid and structural domains will not detach or overlap during the motion. These coupling conditions depend on the fluid.

For an inviscid fluid (no shear effects), only normal components are coupled because an inviscid fluid is free to slip along the structural interface; that is,

$$\begin{cases} n \cdot u = n \cdot u_S & \text{continuity of normal displacements} \\ n \cdot v = n \cdot v_S & \text{continuity of normal velocities} \end{cases}$$

Chapter 2, Volume 3
where the displacement/velocity of the fluid \((u/v)\) along the normal to the interface must be equal to the displacement/velocity of the structure \((u_s/v_s)\) along the same direction. Both equations are equivalent and one or the other is used, depending on the formulation employed (displacements or velocities).

For a viscous fluid, the coupling between fluid and structure requires that velocities (or displacements) coincide along the interface; that is,

\[
\begin{align*}
 u &= u_s \quad \text{continuity of displacements} \\
 v &= v_s \quad \text{continuity of velocities}
\end{align*}
\]

In practice, two nodes are placed at each point of the interface: one fluid node and one structural node. Since the fluid is treated in the ALE formulation, the movement of the fluid mesh may be chosen completely independent of the movement of the fluid itself. In particular, we may constrain the fluid nodes to remain contiguous to the structural nodes, so that all nodes on the sliding interface remain permanently aligned. This is achieved by prescribing the grid velocity \(\hat{v}\) of the fluid nodes at the interface to be equal to the material velocity \(v_s\) of the adjacent structural nodes. The permanent alignment of nodes at ALE interfaces greatly facilitates the flow of information between the fluid and structural domains and permits fluid–structure coupling to be effected in the simplest and the most elegant manner; that is, the imposition of the previous kinematic conditions is simple because of the node alignment.

The dynamic condition is automatically verified along fixed rigid boundaries, but it presents the classical difficulties in fluid–structure interaction problems when compatibility at nodal level in velocities and stresses is required (both for flexible or rigid structures whose motion is coupled to the fluid flow). This condition requires that the stresses in the fluid be equal to the stresses in the structure. When the behavior of the fluid is governed by the linear Stokes law \((\sigma = -pI + 2\nu\nabla S v)\) or for inviscid fluids this condition is

\[-p n + 2\nu(n \cdot \nabla S) v = n \cdot \sigma_s \quad \text{or} \quad -p n = n \cdot \sigma_s\]

respectively, where \(\sigma_s\) is the stress tensor acting on the structure. In the finite element representation, the continuous interface is replaced with a discrete approximation and instead of a distributed interaction pressure, consideration is given to its resultant at each interface node.

There is a large amount of literature on ALE fluid–structure interaction, both for flexible structures and for rigid solids; see, among others, Liu and Chang (1985), Liu and Gvildys (1986), Nomura and Hughes (1992), Le Tallec and Mouro (2001), Casadei et al. (2001), Sarrate et al. (2001), and Zhang and Hisada (2001).

Remark (Fluid–rigid-body interaction) In some circumstances, especially when the structure is embedded in a fluid and its deformations are small compared with the displacements and rotations of its center of gravity, it is justified to idealize the structure as a rigid body resting on a system consisting of springs and dashpots. Typical situations in which such an idealization is legitimate include the simulation of wind-induced vibrations in high-rise buildings or large bridge girders, the cyclic response of offshore structures exposed to sea currents, as well as the behavior of structures in aeronautical and naval engineering where structural loading and response are dominated by fluid-induced vibrations. An illustrative example of ALE fluid–rigid-body interaction is shown in Section 6.2.

Remark (Normal to a discrete interface) In practice, especially in complex 3-D configurations, one major difficulty is to determine the normal vector at each node of the fluid–structure interface. Various algorithms have been developed to deal with this issue; Casadei and Halleux (1995) and Casadei and Sala (1999) present detailed solutions. In 2-D, the tangent to the interface at a given node is usually defined as parallel to the line connecting the nodes at the ends of the interface segments meeting at that node.

Remark (Free surface and structure interaction) The above discussion of the coupling problem only applies to those portions of the structure that are always submerged during the calculation. As a matter of fact, there may exist portions of the structure, which only come into contact with the fluid some time after the calculation begins. This is, for instance, the case for structural parts above a fluid-free surface. For such portions of the structural domain, some sort of sliding treatment is necessary, as for Lagrangian methods.

6.1.3 Geometric conservation laws

In a series of papers (see Lesoinne and Farhat, 1996; Koobus and Farhat, 1999; Guillard and Farhat, 2000; and Farhat et al., 2001), Farhat and coworkers have discussed the notion of geometric conservation law for unsteady flow computations on moving and deforming finite element or finite volume grids.

The basic requirement is that any ALE computational method should be able to predict exactly the trivial solution of a uniform flow. The ALE equation of mass balance (37) is usually taken as the starting point to derive the geometric conservation law. Assuming uniform fields of density \(\rho\) and material velocity \(\vec{v}\), it reduces to the continuous geometric conservation law

\[
\frac{\partial}{\partial t} \int_V \rho \, dV = \int_{S_t} \hat{\vec{v}} \cdot n \, dS \quad (38)
\]
As remarked by Smith (1999), equation (38) can also be derived from the other two ALE integral conservation laws (37) with appropriate restrictions on the flow fields.

Integrating equation (38) in time from \(t^n \) to \(t^{n+1} \) renders the discrete geometric conservation law (DGCL)

\[
|\Omega^{n+1}_e| - |\Omega^n_e| = \int_{t^n}^{t^{n+1}} \left(\int_{S_j} \mathbf{v} \cdot \mathbf{n} \, dS \right) \, dt
\]

which states that the change in volume (or area, in 2-D) of each element from \(t^n \) to \(t^{n+1} \) must be equal to the volume (or area) swept by the element boundary during the time interval. Assuming that the volumes \(\Omega_e \) in the left-hand side of equation (39) can be computed exactly, this amounts to requiring the exact computation of the flux in the right-hand side also. This poses some restrictions on the update procedure for the grid position and velocity. For instance, Lesoinne and Farhat (1996) show that, for first-order time-integration schemes, the mesh velocity should be computed as \(\mathbf{v}^{n+1/2} = (x^{n+1} - x^n) / \Delta t \). They also point out that, although this intuitive formula was used by many time-integrators prior to DGCLs, it is violated in some instances, especially in fluid–structure interaction problems where mesh motion is coupled with structural deformation.

The practical significance of DGCLs is a debated issue in the literature. As admitted by Guillard and Farhat (2000), ‘there are recurrent assertions in the literature stating that, in practice, enforcing the DGCL when computing on moving meshes is unnecessary’. Later, Farhat et al. (2001) and other authors have studied the properties of DGCL-enforcing ALE schemes from a theoretical viewpoint. The link between DGCLs and the stability (and accuracy) of ALE schemes is still a controversial topic of current research.

6.2 Applications in ALE fluid dynamics

The first example consists in the computation of cross-flow and rotational oscillations of a rectangular profile. The flow is modeled by the incompressible Navier–Stokes equations and the rectangle is regarded as rigid. The ALE formulation for fluid–rigid-body interaction proposed by Sarrate et al. (2001) is used.

Figure 6 depicts the pressure field at two different instants. The flow goes from left to right. Note the crossflow translation and the rotation of the rectangle. The ALE kinematical description avoids excessive mesh distortion (see Figure 7). For this problem, a computationally efficient rezoning strategy is obtained by dividing the mesh into three zones: (1) the mesh inside the inner circle is prescribed to

Figure 6. Flow around a rectangle. Pressure fields at two different instants. A color version of this image is available at http://www.mrw.interscience.wiley.com/ccm

Figure 7. Details of finite element mesh around the rectangle. The ring allows a smooth transition between the rigidly moving mesh around the rectangle and the Eulerian mesh far from it.
move rigidly attached to the rectangle (no mesh distortion and simple treatment of interface conditions); (2) the mesh outside the outer circle is Eulerian (no mesh distortion and no need to select mesh velocity); (3) a smooth transition is prescribed in the ring between the circles (mesh distortion under control).

The second example highlights ALE capabilities for fluid–structure interaction problems. The results shown here, discussed in detail by Casadei and Potapov (2004), have been provided by Casadei and are reproduced here with the authors' kind permission. The example consists in a long 3-D metallic pipe with a square cross section, sealed at both ends, containing a gas at room pressure (see Figure 8). Initially, two 'explosions' take place at the ends of the pipe, simulated by the presence of the same gas, but at a much higher initial pressure.

The gas motion through the pipe is partly affected by internal structures within the pipe (diaphragms #1, #2 and #3) that create a sort of labyrinth. All the pipe walls, and the internal structures, are deformable and are characterized by elastoplastic behavior. The pressures and structural-material properties are so chosen that very large motions and relatively large deformations occur in the structure.

Figure 9 shows the real deformed shapes (not scaled up) of the pipe with superposed fluid-pressure maps. Note the strong wave-propagation effects, the partial wave reflections at obstacles, and the 'ballooning' effect of the thin pipe walls in regions at high pressure. This is a severe test, among other things, for the automatic ALE rezoning algorithms that must keep the fluid mesh reasonably uniform under large motions.

7 ALE METHODS IN NONLINEAR SOLID MECHANICS

Starting in the late 1970s, the ALE formulation has been extended to nonlinear solid and structural mechanics. Particular efforts were made in response to the need to simulate problems describing crack propagation, impact, explosion, vehicle crashes, as well as forming processes of materials. The large distortions/deformations that characterize these problems clearly undermine the utility of the Lagrangian approach traditionally used in problems involving materials with path-dependent constitutive relations. Representative publications on the use of ALE in solid mechanics are, among many others, Liu et al. (1986, 1988), Schreurs et al. (1986), Benson (1989), Hušínk et al. (1990), Ghosh and Kikuchi (1991), Baaijens (1993), Huerta and Casadei (1994), Rodríguez-Ferran et al. (1998, 2002), Askes et al. (1999), and Askes and Suijs (2000).

If mechanical effects are uncoupled from thermal effects, the mass and momentum equations can be solved independently from the energy equation. According to expressions (34), the ALE version of these equations is

\[
\frac{\partial \rho}{\partial t} + (c \cdot \nabla) \rho = -\rho \nabla \cdot \mathbf{v} \tag{40a}
\]

\[
\rho \frac{\partial \mathbf{v}}{\partial t} + \rho (c \cdot \nabla) \mathbf{v} = \nabla \sigma + \rho \mathbf{b} \tag{40b}
\]

where \(\mathbf{a} \) is the material acceleration defined in (35a, b and c), \(\sigma \) denotes the Cauchy stress tensor and \(\mathbf{b} \) represents an applied body force per unit mass.

A standard simplification in nonlinear solid mechanics consists of dropping the mass equation (40a), which is not explicitly accounted for, thus solving only the momentum equation (40b). A common assumption consists of taking the density \(\rho \) as constant, so that the mass balance (40a) reduces to

\[
\nabla \cdot \mathbf{v} = 0 \tag{41}
\]

which is the well-known incompressibility condition. This simplified version of the mass balance is also commonly neglected in solid mechanics. This is acceptable because elastic deformations typically induce very small changes in volume, while plastic deformations are volume preserving (isochoric plasticity). This means that changes in density are negligible and that equation (41) automatically holds to sufficient approximation without the need to add it explicitly to the set of governing equations.
Figure 9. Explosions in a 3-D labyrinth. Deformation in structure and pressure in fluid are properly captured with ALE fluid–structure interaction: (a) whole model; (b) zoom of diaphragm #1; (c) zoom of diaphragms #2 and #3. A color version of this image is available at http://www.mrw.interscience.wiley.com/ecm
7.1 ALE treatment of steady, quasistatic and dynamic processes

In discussing the ALE form (40b) of the momentum equation, we shall distinguish between steady, quasistatic, and dynamic processes. In fact, the expression for the inertia forces $\rho \mathbf{a}$ critically depends on the particular type of process under consideration.

A process is called steady if the material velocity \mathbf{v} in every spatial point \mathbf{x} is constant in time. In the Eulerian description (35b), this results in zero local acceleration $\partial \mathbf{v}/\partial t|_{\mathbf{x}}$ and only the convective acceleration is present in the momentum balance, which reads

$$\rho \mathbf{a} = \rho (\mathbf{v} \cdot \nabla) \mathbf{v} = \nabla \cdot \mathbf{\sigma} + \rho \mathbf{b}$$

(42)

In the ALE context, it is also possible to assume that a process is steady with respect to a grid point \mathbf{x} and neglect the local acceleration $\partial \mathbf{v}/\partial t|_{\mathbf{x}}$ in the expression (35c); see, for instance, Ghosh and Kikuchi (1991). The momentum balance then becomes

$$\rho \mathbf{a} = \rho (c \cdot \nabla) \mathbf{v} = \nabla \cdot \mathbf{\sigma} + \rho \mathbf{b}$$

(43)

However, the physical meaning of a null ALE local acceleration (that is, of an “ALE-steady” process) is not completely clear, due to the arbitrary nature of the mesh velocity and, hence, of the convective velocity c.

A process is termed quasistatic if the inertia forces $\rho \mathbf{a}$ are negligible with respect to the other forces in the momentum balance. In this case, the momentum balance reduces to the static equilibrium equation

$$\nabla \cdot \mathbf{\sigma} + \rho \mathbf{b} = 0$$

(44)

in which time and material velocity play no role. Since the inertia forces have been neglected, the different descriptions of acceleration in equations (35a, b and c) do not appear in equation (44), which is therefore valid in both Eulerian and ALE formulations. The important conclusion is that there are no convective terms in the ALE momentum balance for quasistatic processes. A process may be modeled as quasistatic if stress variations and/or body forces are much larger than inertia forces. This is a common situation in solid mechanics, encompassing, for instance, various metal-forming processes. As discussed in the next section, convective terms are nevertheless present in the ALE (and Eulerian) constitutive equation for quasistatic processes. They reflect the fact that grid points are occupied by different particles at different times.

Finally, in transient dynamic processes, all terms must be retained in expression (35c) for the material acceleration, and the momentum balance equation is given by expression (40b).

7.2 ALE constitutive equations

Compared to the use of the ALE description in fluid dynamics, the main additional difficulty in nonlinear solid mechanics is the design of an appropriate stress-update procedure to deal with history-dependent constitutive equations. As already mentioned, constitutive equations of ALE nonlinear solid mechanics contain convective terms that account for the relative motion between mesh and material. This is the case for both hypoelastoplastic and hyperelastoplastic models.

7.2.1 Constitutive equations for ALE hypoelastoplasticity

Hypoelastoplastic models are based on an additive decomposition of the stretching tensor $\nabla^S \mathbf{v}$ (symmetric part of the velocity gradient) into elastic and plastic parts; see, for instance, Belytschko et al. (2000) or Bonet and Wood (1997). They were used in the first ALE formulations for solid mechanics and are still the standard choice. In these models, material behavior is described by a rate-form constitutive equation

$$\mathbf{\sigma}^* = f(\mathbf{\sigma}, \nabla^S \mathbf{v})$$

(45)

relating an objective rate of Cauchy stress $\mathbf{\sigma}^*$ to stress and stretching. The material rate of stress

$$\dot{\mathbf{\sigma}} = \left. \frac{\partial \mathbf{\sigma}}{\partial t} \right|_{\mathbf{x}} + \left. \frac{\partial \mathbf{\sigma}}{\partial t} \right|_{\mathbf{\chi}} + (c \cdot \nabla) \mathbf{\sigma}$$

(46)

cannot be employed in relation (45) to measure the stress rate because it is not an objective tensor, so large rigid-body rotations are not properly treated. An objective rate of stress is obtained by adding to $\dot{\mathbf{\sigma}}$ some terms that ensure the objectivity of $\mathbf{\sigma}^*$; see, for instance, Malvern (1969) or Belytschko et al. (2000). Two popular objective rates are the Truesdell rate and the Jaumann rate

$$\mathbf{\sigma}^* = \mathbf{\sigma} - \nabla^W \mathbf{v} \cdot \mathbf{\sigma} - \mathbf{\sigma} \cdot (\nabla^W \mathbf{v})^T$$

(47)

where $\nabla^W \mathbf{v} = \frac{1}{2} (\nabla \mathbf{v} - \nabla^T \mathbf{v})$ is the spin tensor.

Substitution of equation (47) (or similar expressions for other objective stress rates) into equation (45) yields

$$\dot{\mathbf{\sigma}} = g(\mathbf{\sigma}, \nabla^S \mathbf{v}, \ldots)$$

(48)

where g contains both f and the terms in $\mathbf{\sigma}^*$, which ensure its objectivity.
In the ALE context, referential time derivatives, not material time derivatives, are employed to represent evolution in time. Combining expression (46) of the material rate of stress and the constitutive relation (48) yields a rate-form constitutive equation for ALE nonlinear solid mechanics

\[\dot{\sigma} = \frac{\partial \sigma}{\partial \tau} \bigg|_\chi + (c \cdot \nabla)\sigma = q \]

(49)

where, again, a convective term reflects the motion of material particles relative to the mesh. Note that this relative motion is inherent in ALE kinematics, so the convective term is present in all the situations described in Section 7.1, including quasistatic processes.

Because of this convective effect, the stress update cannot be performed as simply as in the Lagrangian formulation, in which the element Gauss points correspond to the same material particles during the whole calculation. In fact, the accurate treatment of the convective terms in ALE rate-type constitutive equations is a key issue in the accuracy of the formulation, as discussed in Section 7.3.

7.2.2 Constitutive equations for ALE hyperelastoplasticity

Hyperelastoplastic models are based on a multiplicative decomposition of the deformation gradient into elastic and plastic parts, \(F = F^e F^p \); see, for instance, Belytschko et al. (2000) or Bonet and Wood (1997). They have only very recently been combined with the ALE description (see Rodriguez-Ferran et al., 2002 and Armero and Love, 2003).

The evolution of stresses is not described by means of a rate-form equation, but in closed form as

\[\tau = 2 \frac{\partial W}{\partial b^e} b^e \]

(50)

where \(b^e = F^e \cdot (F^e)^T \) is the elastic left Cauchy–Green tensor, \(W \) is the free energy function, and \(\tau = \det(F)\sigma \) is the Kirchhoff stress tensor.

Plastic flow is described by means of the flow rule

\[\dot{b}^e - \nabla v \cdot b^e - b^e \cdot (\nabla v)^T = -2 \dot{\gamma} m(\tau) \cdot b^e \]

(51)

The left-hand side of equation (51) is the Lie derivative of \(b^e \) with respect to the material velocity \(v \). In the right-hand side, \(m \) is the flow direction and \(\dot{\gamma} \) is the plastic multiplier.

Using the fundamental ALE relation (27) between material and referential time derivatives, the flow rule (51) can be recast as

\[\dot{b}^e = \frac{\partial b^e}{\partial t} \bigg|_\chi + (c \cdot \nabla) b^e = \nabla v \cdot b^e + b^e \cdot (\nabla v)^T - 2 \dot{\gamma} m(\tau) \cdot b^e \]

(52)

Note that, like in equation (49), a convective term in this constitutive equation reflects the relative motion between mesh and material.

7.3 Stress-update procedures

In the context of hypoelastoplasticity, various strategies have been proposed for coping with the convective terms in equation (49). Following Benson (1992b), they can be classified into split and unsplit methods.

If an unsplit method is employed, the complete rate equation (49) is integrated forward in time, including both the convective term and the material term \(q \). This approach is followed, among others, by Liu et al. (1986), who employed an explicit time-stepping algorithm and by Ghosh and Kikuchi (1991), who used an implicit unsplit formulation.

On the other hand, split, or fractional-step methods treat the material and convective terms in (49) in two distinct phases: a material (or Lagrangian) phase is followed by a convection (or transport) phase. In exchange for a certain loss in accuracy due to splitting, split methods are simpler and especially suitable in upgrading a Lagrangian code to the ALE description. An implicit split formulation is employed by Huétink et al. (1990) to model metal-forming processes. An example of explicit split formulation may be found in Huerta and Casadei (1994), where ALE finite elements are used to model fast-transient phenomena.

The situation is completely analogous for hyperelastoplasticity, and similar comments apply to the split or unsplit treatment of material and convective effects. In fact, if a split approach is chosen (see Rodriguez-Ferran et al., 2002), the only differences with respect to the hypoelastoplastic models are (1) the constitutive model for the Lagrangian phase (hypo/hyper) and (2) the quantities to be transported in the convection phase.

7.3.1 Lagrangian phase

In the Lagrangian phase, convective effects are neglected. The constitutive equations recover their usual expressions (48) and (51) for hypo- and hyper-models respectively. The ALE kinematical description has (momentarily) disappeared from the formulation, so all the concepts, ideas, and algorithms of large strain solid mechanics with a Lagrangian description apply (see Bonet and Wood (1997), Belytschko et al. (2000), and Chapter 7, Volume 2).

The issue of objectivity is one of the main differences between hypo- and hypermodels. When devising time-integration algorithms to update stresses from \(\sigma^n \) to \(\sigma^{n+1} \).
in hypoelastoplastic models, a typical requirement is incremental objectivity (that is, the appropriate treatment of rigid-body rotations over the time interval \([t^n, t^{n+1}]\)). In hyperelastoplastic models, on the contrary, objectivity is not an issue at all, because there is no rate equation for the stress tensor.

7.3.2 Convection phase

The convective effects neglected before have to be accounted for now. Since material effects have already been treated in the Lagrangian phase, the ALE constitutive equations read simply

\[
\begin{align*}
\frac{\partial \sigma}{\partial t} + (c \cdot \nabla) \sigma &= 0; \\
\frac{\partial b^e}{\partial t} + (c \cdot \nabla) b^e &= 0; \\
\frac{\partial \alpha}{\partial t} + (c \cdot \nabla) \alpha &= 0
\end{align*}
\]

(Equations (53)\textsubscript{1} and (53)\textsubscript{2} correspond to hypo- and hyperelastoplastic models respectively (cf. with equations 49 and 52). In equation (53)\textsubscript{3}, valid for both hypo- and hyper-models, \(\alpha\) is the set of all the material-dependent variables, i.e. variables associated with the material particle \(X\): internal variables for hardening or softening plasticity, the volume change in nonisochoric plasticity, and so on (see Rodríguez-Ferran et al., 2002).

The three equations in (53) can be written more compactly as

\[
\frac{\partial \mathbf{\Box}}{\partial t} + (c \cdot \nabla) \mathbf{\Box} = 0
\]

(54)

where \(\mathbf{\Box}\) represents the appropriate variable in each case. Note that equation (54) is simply a first-order linear hyperbolic PDE, which governs the transport of field \(\mathbf{\Box}\) by the velocity field \(c\). However, two important aspects should be considered in the design of numerical algorithms for the solution of this equation:

1. \(\mathbf{\Box}\) is a tensor (for \(\sigma\) and \(b^e\)) or vector-like (for \(\alpha\)) field, so equation (54) should be solved for each component \(\Box\) of \(\mathbf{\Box}\):

\[
\frac{\partial \Box}{\partial t} + c \cdot \nabla \Box = 0
\]

(55)

Since the number of scalar equations (55) may be relatively large (for instance: eight for a 3-D computation with a plastic model with two internal variables), the need for efficient convection algorithms is a key issue in ALE nonlinear solid mechanics.

2. \(\Box\) is a Gauss-point-based (i.e. not a nodal-based) quantity, so it is discontinuous across finite element edges. For this reason, its gradient \(\nabla \Box\) cannot be reliably computed at the element level. In fact, handling \(\nabla \Box\) is the main numerical challenge in ALE stress update.

Two different strategies may be used to tackle the difficulties associated with \(\nabla \Box\). One possible approach is to approximate \(\Box\) by a continuous field \(\tilde{\Box}\), and replace \(\nabla \Box\) by \(\nabla \tilde{\Box}\) in equation (55). The smoothed field \(\tilde{\Box}\) can be obtained, for instance, by least-squares approximation (see Huétink et al., 1990).

Another possibility is to retain the discontinuous field \(\Box\) and devise appropriate algorithms that account for this fact. To achieve this aim, a fruitful observation is noting that, for a piecewise constant field \(\Box\), equation (55) is the well-known Riemann problem. Through this connection, the ALE community has exploited the expertise on approximate Riemann solvers of the CFD community (see Le Veque, 1990).

Although \(\Box\) is, in general, not constant for each element (expect for one-point quadratures), it can be approximated by a piecewise constant field in a simple manner. Figure 10 depicts a four-noded quadrilateral with a 2\(\times\)2 quadrature subdivided into four subelements. If the value of \(\Box\) for each Gauss point is taken as representative for the whole subelement, then a field constant within each subelement results.

In this context, equation (55) can be solved explicitly by looping all the subelements in the mesh by means of a Godunov-like technique based on Godunov’s method for conservation laws (see Rodríguez-Ferran et al., 1998):

\[
\Box^{n+1} = \Box^n - \frac{\Delta t}{V} \sum_{i=1}^{N_e} f_i (\Box_i - \Box_j) \left[1 - \text{sign}(f_{i,j}) \right]
\]

(56)

Figure 10. Finite element subdivided into subelements for the Godunov-like stress update.
According to equation (56), the Lagrangian (i.e., after the Lagrangian phase) value Γ^{n+1} is updated into the final value Γ^{n+1} by taking into account the flux of Γ across the subelement edges. In the second term on the right-hand side, Δt is the time step, V is the volume (or area, in 2-D) of the subelement, N_e is the number of edges per subelement, Γ^e is the value of Γ in the contiguous subelement across edge e, and f_t^e is the flux of convective velocity across edge e, $f_t^e = f_t(c \cdot n) d\Gamma^e$. Note that a full-donor (i.e., full upwind) approach is obtained by means of $\text{sign}(f_t^e)$.

Remark (Split stress update and iterations) In principle, the complete stress update must be performed at each iteration of the nonlinear equilibrium problem. However, a common simplification consists in leaving the convection phase outside the iteration loop (see Baaijens, 1993; Rodríguez-Ferran et al., 1998; and Rodríguez-Ferran et al., 2002); that is, iterations are performed in a purely Lagrangian fashion up to equilibrium and the convection phase is performed after remeshing, just once per time step. Numerical experiments reveal that disruption of equilibrium caused by convection is not severe and can be handled as extra residual forces in the next load step (see references just cited).

Remark (ALE finite strain elasticity) Since hyperelasticity can be seen as a particular case of hyperelastoplasticity, we have chosen here the more general situation for a more useful presentation. In the particular case of large elastic strains (hyperelasticity), where $F = F^e$, an obvious option is to particularize the general approach just described by solving only the relevant equation (i.e., equation 52 for b^e; note that there are no internal variables α in elasticity). In the literature, other approaches exist for this specific case. Yamada and Kikuchi (1993) and Armero and Love (2003) exploit the relationship $F = F_\Phi F_\Psi^{-1}$, where F_Φ and F_Ψ are the deformation gradients of mappings Φ and Ψ respectively (see Figure 4), to obtain an ALE formulation for hyperelasticity with no convective terms. In exchange for the need to handle the convective term in the update of b^e (see equations 52 and 53), the former approach has the advantage that only the quality of mapping Φ needs to be controlled. In the latter approaches, on the contrary, both the quality of Φ and Ψ must be ensured; that is, two meshes (instead of only one) must be controlled.

7.4 Applications in ALE nonlinear solid mechanics

For illustrative purposes, two powder compaction ALE simulations are briefly discussed here. More details can be found in Rodríguez-Ferran et al. (2002) and Pérez-Foguet et al. (2003).

The first example involves the bottom punch compaction of an axisymmetric flanged component (see Figure 11). If a Lagrangian description is used (see Figure 11(a)), the large upward mass flow leads to severe element distortion in the reentrant corner, which in turn affects the accuracy in the relative density. With an ALE description (see Figure 11(b)), mesh distortion is completely precluded by means of a very simple ALE remeshing strategy: a uniform vertical mesh compression is prescribed in the bottom, narrow part of the piece, and no mesh motion (i.e., Eulerian mesh) in the upper, wide part.

The second example involves the compaction of a multilevel component. Owing to extreme mesh distortion, it is not possible to perform the simulation with a Lagrangian approach. Three ALE simulations are compared in Figure 12, corresponding to top, bottom, and simultaneous top–bottom compaction. Even with an unstructured mesh and a more complex geometry, the ALE description avoids mesh distortion, so the final relative density profiles can be computed (see Figure 13).

7.5 Contact algorithms

Contact treatment, especially when frictional effects are present, is a very important feature of mechanical modeling and certainly remains one of the more challenging problems in computational mechanics. In the case of the classical Lagrangian formulation, much attention has been devoted to contact algorithms and the interested reader is referred to references by Chapter 6, Volume 2, Zhong (1993), Wriggers (2002), and Laursen (2002) in order to get acquainted with the subject. By contrast, modeling of contact in connection with the ALE description has received much less attention. Paradoxically, one of the interesting features of ALE is that, in some situations, the formulation can avoid the burden of implementing cumbersome contact algorithms. The coin problem in Figure 14 is a good illustration of the versatility of ALE algorithms in the treatment of frictionless contact over a known (moving) surface. The material particle M located at the punch corner at time t has been represented. At time $t + \Delta t$, the punch has moved slightly downwards and, due to compression, the material particle M has moved slightly to the right. When a Lagrangian formulation is used in the simulation of such a process, due to the fact that the mesh sticks to the material, a contact algorithm has to be used to obtain a realistic simulation. On the contrary, using an ALE formalism, the implementation of a contact algorithm can be avoided. This is simply because the ALE formulation allows us to prevent the horizontal displacement of the mesh nodes located under the
Figure 11. Final relative density after the bottom punch compaction of a flanged component: (a) Lagrangian approach leads to severe mesh distortion; (b) ALE approach avoids distortion. A color version of this image is available at http://www.mrw.interscience.wiley.com/ecm

Figure 12. Final relative density of a multilevel component. From left to right: top, bottom and double compaction. A color version of this image is available at http://www.mrw.interscience.wiley.com/ecm
normal contact stress depends only on the current geometry and not on the history of penetration. As a consequence, no convection algorithm needs to be activated for that quantity. On the contrary, for a Coulomb-friction model, the shear stresses in the contact elements are incrementally calculated. They therefore depend on the history and hence a convective increment of the shear stress should be evaluated. One simple way to avoid the activation of the convection algorithm for the contact/friction quantities is indeed to keep the boundaries purely Lagrangian. However, in general this will not prevent mesh distortions and nonconvexity in the global mesh.

Various applications of the ALE technology have been developed so far to treat the general case of moving boundaries with Coulomb or Tresca frictional contact. For example, in their pioneering work on ALE contact, Haber and Hariandja (1985) update the mesh, so that nodes and elements edges on the surface of contacting bodies coincide exactly at all points along the contact interface in the deformed configuration. In such a case, the matching of node pairs and element edges ensures a precise satisfaction of geometric compatibility and allows a consistent transfer of contact stresses between the two bodies. A similar procedure was established by Ghosh (1992) but, in this case, the numerical model introduces ALE nodal points on one of the contacting (slave) surfaces that are constrained to follow Lagrangian nodes on the other (master) surface. Liu et al. (1991) presented an algorithm, mostly dedicated to rolling applications, where the stick nodes are assumed Lagrangian, whereas the slip nodes are equally spaced between the two adjacent stick nodes. More general procedures have been introduced by Huëtink et al. (1990).

More recently, sophisticated frictional models incorporating lubrication models have been used in ALE formulations. In such a case, the friction between the contacting lubricated bodies is expressed as a function of interface variables (mean lubrication film thickness, sheet and tooling roughness) in addition to more traditional variables (interface pressure, sliding speed, and strain rate). Examples of complex lubrication models integrated into an ALE framework have been presented by Hu and Liu (1992, 1993, 1994), Martinet and Chabrand (2000), and Boman and Ponthot (2002).

REFERENCES

